
MACHINELOGIC
Runtime Reference Guide

MACHINELOGIC
Runtime Reference Guide

CTC Parker Automation Phone: 513-831-2340

50 W. TechneCenter Drive, Milford, Ohio 45150 Technical Support: 513-248-1714

A3-05796-103

Copyright and Trademark Notice
Copyright © 2004 by Parker Automation-CTC. All rights reserved. No part of this publication may
be reproduced, transmitted, transcribed, stored in a retrieval system, in any form or by any means,
mechanical, photocopying, recording or otherwise, without the prior written consent of Parker
Automation-CTC.

While every precaution has been taken in the preparation of this manual, Parker Automation-CTC
and the author assume no responsibility for errors or omissions. Neither is any liability assumed
for damages resulting from the use of the information contained herein. All product and company
names are trademarks of their respective companies and licenses.

MachineLogic Runtime Reference Guide Contents • 1

Contents

INTRODUCTION..1-1

What is MachineLogic Runtime? 1-1
MLSC 1-1

MachineLogic Runtime and MachineLogic Development 1-1

What kind of documentation is provided for MachineLogic Runtime? 1-2

Who should read this manual and how is it structured? 1-2

Symbols and textual conventions 1-2

GETTING FAMILIAR WITH MACHINELOGIC RUNTIME2-1

The MachineLogic development system and MachineLogic Runtime 2-1

Parts of MachineLogic Runtime 2-2
I/O interface 2-2
Communication interface 2-2
System manager 2-2
Error manager 2-2
Debug-Kernel 2-3
Compiler for control program 2-3
MLSC Control Panel 2-3

Technical data 2-3

Compliance with IEC 1131-3 2-3
Restrictions for data types 2-4
Restrictions for strings 2-5
Restrictions for ST 2-5

MACHINELOGIC RUNTIME MEMORY ...3-1

Memory Guidelines 3-1

Variable declarations in MachineLogic 3-1
Non-direct variables 3-1
Direct variables 3-1
Retentive variables 3-3
System flags 3-3
Shared memory firmware flags 3-3
How to use variables in MachineLogic 3-4

CONFIGURING MACHINELOGIC RUNTIME..4-1

Inputs, outputs and the process 4-1

Setting up the I/O configuration in MachineLogic 2.11 4-1
Declaring the I/O groups 4-1
Declaring the logical addresses 4-2
Declaring the I/O driver 4-2

2 Contents MachineLogic Runtime Reference Guide

Setting up the I/O configuration in earlier versions of MachineLogic 4-2
Declaring the I/O groups 4-2
Declaring the logical addresses 4-3
Declaring the I/O driver 4-3

Setting up the data configuration 4-4

CONTROL APPLICATIONS AND MACHINELOGIC RUNTIME..............................5-1

The control application in the MachineLogic Runtime memory 5-1

Configurations and resources 5-1
How to declare resources in MachineLogic 5-2

Tasks and MachineLogic Runtime 5-2
Runtime and task description 5-3

User tasks 5-3
Cyclic tasks 5-3
System tasks 5-3
How to declare user tasks in MachineLogic 5-5
How to use system tasks and SPGs in case of MachineLogic Runtime errors 5-5

Tasks and watchdogs 5-5

Tasks and programs 5-6
How to use programs in MachineLogic 5-6

Tasks and preemptive scheduling 5-7

DOWNLOADING, CONTROLLING AND DEBUGGING..6-1

Downloading 6-1

Operational states in MachineLogic Runtime 6-1

Changing the operational states – overview 6-2

Controlling and changing operational states 6-3
Starting the program execution 6-3
Stopping the program execution 6-3
General reset 6-3

Debugging and online mode 6-4

Debugging and operational states 6-4
Debugging with set breakpoints 6-4
Stopping the control program while debugging 6-5

System flags 6-5
User task information 6-6
Error catalog information 6-6

MACHINELOGIC RUNTIME DATA TYPES...7-1

Real Numbers 7-1
Error treatment of Real Numbers 7-1

Strings 7-2
Error treatment of string errors 7-2
STRING_TO_* 7-3
*TO_STRING 7-5

MachineLogic Runtime Reference Guide Contents • 3

INDEX

APPENDIX - IEC COMPLIANCE LIST

MachineLogic Runtime Reference Guide Introduction

Introduction

This chapter provides information about:

� MachineLogic Runtime

� MachineLogic Development

� The documentation for MachineLogic Runtime

� Conventions used in this manual

MachineLogic Runtime Reference Guide 1-1

Introduction

What is MachineLogic Runtime?

The MachineLogic Runtime kernel is a highly efficient runtime system for complex control applications. It has
been especially designed for IEC 1131-3 and includes nearly the full range of IEC 1131-3 features.
MachineLogic runs on the MachineLogic Slot Card (MLSC). One of these cards must be present in your runtime
workstation for MachineLogic to run.

MachineLogic Runtime uses an efficient standard real-time multitasking system. MachineLogic Runtime, in
conjunction with the real-time multitasking system, offers the possibility of using a CTC PowerStation or any
industrial PC for automation tasks such as measuring, controlling, regulation, visualization, etc.

MachineLogic Runtime has an open interface which allows it to adapt to the InteractX or third-party operator
interface software package. Because of its open I/O interface, MachineLogic Runtime can be used with
decentralized I/O and fieldbusses like DeviceNet and Profibus.

MachineLogic Runtime operates in a multitasking kernel. This multitasking kernel allows MachineLogic
Runtime to run independently of the PC's CPU.

MLSC
The MLSC is a hardware card installed inside your runtime workstation. The MLSC has its own processor on
the card itself where MachineLogic resides.

MachineLogic runs on the MLSC processor while your application runs on the PowerStation or industrial PC's
processor. The MLSC does not have to share a processor on the runtime workstation to execute tasks.

The MLSC also has an Ethernet port built onto the card itself.

MachineLogic Runtime and MachineLogic Development

MachineLogic Runtime is delivered in conjunction with the IEC 1131-3 programming standard. MachineLogic
allows easy programming in SFC, FBD, LD, IL and ST under Windows 95/98/2000/NT/ME. From the users'
point of view MachineLogic Runtime is the tool working in the background. All essential operations are done
via the graphical user interface of MachineLogic including downloading and online debugging. Nevertheless it
is important to know something about the structure of the runtime system to configure MachineLogic and the
control program in the optimal way.

1-2 MachineLogic Runtime Reference Guide

What kind of documentation is provided for MachineLogic
Runtime?

The documentation for MachineLogic Runtime consists of several parts. These parts are dedicated to different
users and purposes. For an understanding of all parts we are assuming knowledge about using MS-Windows.

This reference guide provides all background information for a better understanding of the concepts of
MachineLogic Runtime and of the operations to be done. This manual gives you information on how to proceed
for structuring your MachineLogic project.

The context-sensitive help for MachineLogic Runtime can be viewed within MachineLogic by pressing F1. The
online help provides detailed reference information along with basic information on the product.

Who should read this manual and how is it structured?

This manual is dedicated to all users who want to learn about the concepts on which MachineLogic Runtime is
based for better structuring their application task. The manual consists of the following chapters:

• Getting familiar with MachineLogic Runtime: Provides an overview of the MachineLogic Runtime and its

features, technical data, and performance.
• The MachineLogic Runtime memory: Describes the structure of memory and where the different data are

stored.
• Inputs, outputs, and flags: Describes how to handle input and output signals and how to write the I/O

configuration.
• MachineLogic projects and MachineLogic Runtime: Describes resources, tasks, and pre-emptive

scheduling.
• Downloading, controlling, and debugging: Provides information about the different control states,

downloading, and debugging.

Symbols and textual conventions

The following symbols are used in this manual:
* is used for enumeration.
• is used for an operation which has to be done.
à is used for an operation which is optional.

� is used for a sequence of operations to be done with the mouse.

� is used for a sequence of operations to be done with the keyboard.

* is used to provide important information.

	 is used to introduce references to other documents.

The following textual conventions have been set up for this manual:
' commas are used for names of icons, menu items or names of objects
 e.g. menu item 'Cut'; function block 'Level'.

MachineLogic Runtime Reference Guide 1-3

<ALT> brackets are used for the name of keys on your keyboard and for words you have to
enter.

<ALT> + <F4> is used if you have to press two keys at the same time.
driver name Italic letters are used as place holders for proper names.

MachineLogic Runtime Reference Guide Getting familiar with MachineLogic Runtime

Getting familiar with
MachineLogic
Runtime

This chapter provides information about:

� The MachineLogic development system and

MachineLogic Runtime

� The different parts of MachineLogic Runtime

� Platforms and Technical data and system

requirements

� IEC 1131-3 compliance

MachineLogic Runtime Reference Guide 2-1

Getting familiar with MachineLogic
Runtime

The MachineLogic development system and MachineLogic
Runtime

The development procedure of a MachineLogic project and how MachineLogic Runtime controls the process
appears below:

Figure 2-1: Components of the development system

The MachineLogic project is first programmed in MachineLogic and then it is downloaded to MachineLogic
Runtime where it is stored in the MachineLogic Runtime memory. After downloading, the control program can
be started. The process signals are transmitted to MachineLogic Runtime via the local or decentralized I/O
system and drivers. MachineLogic Runtime stores the input signals coming from the process in its memory.
During a runtime cycle, the control program reads the inputs, executes the program logic, and then writes the
outputs. Using the driver the outputs are transmitted from the MachineLogic Runtime memory to the I/Os and
the process.

2-2 MachineLogic Runtime Reference Guide

Parts of MachineLogic Runtime

MachineLogic Runtime consists of several parts as shown in the following figure.

Figure 2-2: Parts of MachineLogic Runtime

I/O interface
The I/O interface is used to communicate with any I/O system. A decentralized I/O system can be used such as a
fieldbus like DeviceNet or Profibus. The I/O interface uses the driver, such as Ethernet Open Modbus
(ENOMB), DeviceNet, or Profibus, to pass the signals between the I/O systems and the memory for signal data.

Communication interface
Via the communication interface all different types of communication protocols between MachineLogic and
MachineLogic Runtime are handled. Such communication protocols include downloading the project,
debugging, and transmitting error messages from MachineLogic Runtime to MachineLogic. You can download
using different protocols.

System manager
MachineLogic Runtime includes a system manager that executes the different parts of the control program. The
system manager handles different tasks and coordinates the execution of programs.

Error manager
The error manager is able to detect and to handle several types of errors that may occur during program
execution. If an error occurs during online communication with MachineLogic, an error message is displayed in
the error catalog of MachineLogic. The user can view the error message from the control dialog.

In case of critical errors like exceeding the fixed time interval for the execution of a program, the error manager
activates a system task. In those cases the system program associated with the task is executed. If there are no
system tasks declared in MachineLogic, program execution stops.

MachineLogic Runtime Reference Guide 2-3

Debug-Kernel
The debug kernel of MachineLogic Runtime offers multiple debug functions such as overwriting and forcing
variables. Debugging is normally done while the process is running. Nevertheless it is also possible to correct
programming errors while the process is stopped by setting breakpoints. All debug operations are executed via
the MachineLogic user interface.

Compiler for control program
In MachineLogic the compiling process leaves the program in a control intermediate code. The MachineLogic
Runtime compiler translates the control intermediate code into machine-executable code.

MLSC Control Panel
The MachineLogic Slot Card (MLSC) Control Panel is the primary user interface for runtime workstations
running the Slot Card on a Windows machine. The Control Panel interfaces with MachineLogic and provides
essential communication functions between a development system running the MachineLogic and a runtime
workstation, such as a PowerStation, with the MLSC installed. These communication functions include
transferring project files as well as creating and restoring remote backups.

The Control Panel displays detailed information about the runtime workstation and allows you to monitor and
configure many of the workstation's hardware and software settings.

The purpose of the Control Panel is to simplify navigation and configuration of the runtime workstation from a
central source. It is designed to reduce the number of steps to perform a task and to minimize the complexity of
the system.

For more information, see the online Help that comes with the Control Panel.

2-4 MachineLogic Runtime Reference Guide

Technical data

For organizing your control program it is useful to know some of the technical data relevant for MachineLogic
Runtime. The technical data sometimes differs from hardware to hardware.

Characteristic Technical data

Speed 80486 CPU at 33 MHz:
1000 Boolean global variables: 0.38 ms
1000 BOOL8 and INT global variables: 0.15 ms

Pentium CPU at 90 MHz:
1000 Boolean global variables: 0.1 ms
1000 BOOL8 and INT global variables: 0.02 ms

Shortest cycle period configurable, standard 1 ms
Program memory capacity per
POU

configurable, approx. 1000 instructions need 10 Kbyte
RAM, in one POU 64 Kbyte program code can be executed.

I/O image capacity • MLSC: limited to the actual memory available in
the system

Data memory capacity • MLSC: limited to the actual memory available in
the system

Number of timers and counters unlimited, depends on the program memory
Number of user tasks 16 tasks

Compliance with IEC 1131-3

This reference guide has an appendix that contains a complete list of IEC compliance. In the general help for
MachineLogic and in the MachineLogic Reference Guide there is an introductory chapter on IEC 1131-3. Please
refer to this documentation for detailed information.

The restrictions that apply to MachineLogic Runtime are described in the following sections.

Restrictions for data types
• Elementary data types: LINT, LREAL, TIME-OF-DAY, DATE-AND-TIME, and LWORD are not yet

implemented in MachineLogic Runtime.
• User-defined data types can only be used within function blocks and programs. It is not possible to use them

in functions.
• User-defined data types cannot be initialized.
• User-defined data types cannot be forced or overwritten. Exception: in the watchlist multi-element, data

types can be forced and overwritten.
• While debugging arrays and structures the variables have to be copied into the watchlist. Copying these

variables into the watchlist can only be done in the variable worksheet and not in the code body worksheet.
• Alias and subrange data types are not yet available.
• Multi-dimensional arrays cannot be declared. But it is possible to declare arrays of arrays as shown in the

following example:

MachineLogic Runtime Reference Guide 2-5

Type declaration:
TYPE
 graph : ARRAY [1..10] OF INT;
 my array : ARRAY [1..3] OF graph;
END_TYPE

Variable declaration:
VAR
 var1 : my_array;
 var2 : INT;
END_VAR

Code body declaration in ST:
var2 := var1[1] [3];

• While using direct variables for arrays or structures of the data type BOOL on inputs or outputs, an error

message is displayed.
• Only the data type 'INT' can be used as an array index. Expressions like 'i + 1' are not possible.
• In arrays the data type BOOL corresponds to one byte.
• While using direct variables for arrays and structures it is up to the application programmer to check if the

logical addresses really exist. No check is done in MachineLogic.
• It is not possible to declare an array within the declaration of a structure. For example:

TYPE
 machine :
 STRUCT
 x_pos : INT;
 performance : ARRAY[1..23] OF INT;
 END_STRUCT;
END_TYPE

However it is possible to declare it as shown in the following example:

TYPE
 perform_def : ARRAY[1..23] OF INT;
 machine : STRUCT
 x_pos : INT;
 performance : perform_def;
 END_STRUCT;
END_TYPE

You have to declare each data type in a data type declaration using TYPE ... END_TYPE.

2-6 MachineLogic Runtime Reference Guide

Restrictions for strings
• The data type STRING always has a size of 80 characters. If your variable of the data type STRING has

four letters, the string needs 85 bytes in the MachineLogic Runtime memory. But it is possible to declare a
new data type with a user defined string length as shown in the following example:

Type declaration:
TYPE
 my_string_1 : STRING(10);
 my_string_2 : STRING(20);
END_TYPE

Variable declaration:
VAR
 var1 : my_string_1;
 var2 : my_string_2;
END_VAR

Code body in IL:
LD var1
ST var2

If you declare several strings of different bit sizes they are all treated as the same data type. Therefore the
code body in IL is correct.

• String functions and function blocks cannot be used in networks. You can only use single functions and

function blocks storing the result to variables.
• Strings cannot be nested while editing in ST.
• Strings cannot be used in function POUs.
• While debugging strings in online mode it might be useful to change the width of the column for online

values choosing the menu item 'Value width' in the submenu 'Online'.

Restrictions for ST
• In IF statements it is possible to compare Boolean variables. For example (var1 being a Boolean variable):

 IF var1=TRUE THEN ...;
However, it is recommended you use another representation because it is faster in execution and
compilation and less code is generated.
Use the following representation: IF var1 THEN;

• In a FOR statement it can only be counted upwards. Therefore the increment value after the keyword BY
must always be positive.

• In a FOR statement the variable 'a' and the increment value can be changed within the body of the statement.
No error message or warning is displayed if you enter the following example:
Example: FOR i=0 TO 10 BY5
 DO i:=10;
Be very careful using such a statement structure.

• In a function call no assignments can be used. The following example is not possible: a:= SIN(b:=3);
• In an expression all operations are processed. Parts of an expression which have no impact on the result are

also processed. In the following example c>d is also processed if a<b is FALSE:
Example: a:=a<b AND c>d;

MachineLogic Runtime Reference Guide The MachineLogic Runtime memory

MachineLogic
Runtime Memory

This chapter provides information about:

� The general structure of the MachineLogic Runtime

memory

� The different parts of the memory

� Variables and flags

MachineLogic Runtime Reference Guide 3-1

MachineLogic Runtime Memory

Memory Guidelines

With the MLSC, MachineLogic Runtime does not require a specific memory area of the runtime system. All
memory is dynamically allocated by the system. The HMA is not divided.

Variable declarations in MachineLogic

In MachineLogic you can either use non-direct or direct variables. In the following sections the method used to
declare these variables in MachineLogic is described. Hints for structuring the variable declarations are also
provided.

Non-direct variables
Non-direct variables are variables whose declaration consists of a name and a data type. You may also assign an
initial value for initializing the variable. An example showing the declaration of a non-direct variable is shown
in the following figure.

VAR
 var1 : BOOL;
END_VAR

Figure 3-3: Declaration of a non-direct variable

In the example the name of the variable is 'var1' and its data type is BOOL. Configuring such a variable
declaration in MachineLogic means that the variable is stored somewhere in memory. The logical memory
address is not known by the application programmer.

All required variables of a temporary nature should be declared as non-directed variables. This is useful because
you do not need to consider the actual memory addresses. It will be automatically assigned when you compile
your project.

Direct variables
Direct variables are variables whose declarations consist of a name, the location, and the data type. You may
also assign an initial value for initializing the variable. All variables defined in I and Q memory must be directed
variables. An example showing the declaration of three direct variables is shown in the following figure.

3-2 MachineLogic Runtime Reference Guide

VAR
 var1 AT %IX2.2 : BOOL;
 var2 AT %QX2.2 : BOOL;
 var3 AT %MX2.2 : BOOL;
END_VAR

Figure 3-4: Declaration of direct variables

In the example the names of the variables are 'var1', 'var2' and 'var3' and their data types are BOOL. The
location is declared using the IEC 1131-3 keyword 'AT' followed by '%'. 'I' refers to the Input region, 'Q' refers
to the Output region, and 'M' refers to the Variable (M) region of the memory area. The prefix 'X' represents the
bit size.

The variable 'var1' is stored in the MachineLogic Runtime memory area 'I' at the logical address '2.2' and with a
size of one bit. The logical address and its bit size are set by the application programmer.

The logical addresses which can be used for 'I' or 'Q' variables are determined by the input and output devices
(e.g. fieldbus) you are using. The addresses must correspond with the areas fixed in the I/O configuration of
MachineLogic.

The logical addresses that can be used for 'M' variables, also called flags, are determined by the settings of the
user areas in the dialog titled 'Data Area' within MachineLogic.

The memory 'M' where 'var3' of the example is stored is separated into two parts. One part is used for all direct
variables of the type 'M'. This part is called the user part of memory 'M'. The other part is used for all non-direct
variables. These non-direct variables are automatically stored by MachineLogic in free memory areas as
mentioned in the previous chapter.

If direct 'M' variables are used, the checkbox 'Declare user memory in I/O configuration automatically' located
on the dialog 'Data Area' should be checked.

To access an M variable in Interact via the MachineLogic Device Driver, you must define the variable as a
directed variable.

* For logical addresses please refer to the chapter 'Configuring MachineLogic Runtime'.

* Be very careful using direct variables. It is up to you to check that no address is used twice. No error
message is displayed in MachineLogic if you are using an address twice!

* Use only logical addresses of the user part of memory area 'M' while declaring direct variables of type
'M'! This is the only way to ensure data consistency!

* It might be useful to declare all inputs and outputs as global variables. This means they have to be
declared as direct variables in the global variable declaration using the keyword 'VAR_GLOBAL'. In
the 'VAR_EXTERNAL' declaration of programs and function blocks they are declared as non-direct
variables. If the memory addresses change, you have to change them only in the global variable
declaration and leave all other declarations unchanged.

MachineLogic Runtime Reference Guide 3-3

Retentive variables
In MachineLogic it is also possible to declare retentive variables. It depends on your hardware memory
configuration whether it is possible to store retentive data.

The memory for retentive data is located in non-volatile memory which retains the data when turning the system
off or in case of a power failure. Retentive variables are declared in MachineLogic using the keyword VAR
RETAIN in the corresponding variable declaration. For example:

VAR RETAIN
 var1 : BOOL;
 var2 AT %MX36243.0 : BOOL;
END_VAR

Figure 3-5: Declaration of a non-direct retentive variable and a direct retentive variable

System flags
System flags provide information about the internal state of MachineLogic Runtime during runtime. The system
flags have fixed memory addresses and can be used as non-direct variables in MachineLogic. All available
system flags and their names are explained in the chapter 'Downloading, controlling and debugging'.

Shared memory firmware flags
MachineLogic reserves a section of the HMA, called the firmware flags, to share common data with Interact
These shared memory flags can be addressed using the optional flag selector '3'. The following figure shows an
example how to address a shared memory flag:

VAR
 var1 AT %MX3.1.1 : BOOL;
END_VAR

Figure 3-6: Addressing a shared memory flag

The logical address consists of the flag selector, the addressed byte, and the addressed bit.

How to use variables in MachineLogic
• Declare global variables in the global variable declaration in the subtree 'Physical Hardware' of the project

tree.
• Declare global variables as VAR_EXTERNAL in the variable declaration of the POU where you want to use

them.
• Declare local variables in the variable declarations of the POU.
• Insert the variables in the corresponding code body worksheets.

	 Refer to the MachineLogic help for detailed information.

MachineLogic Runtime Reference Guide Configuring MachineLogic Runtime

Configuring
MachineLogic
Runtime

This chapter provides information about:

� Inputs and outputs

� Logical memory addresses

� How to setup the I/O configuration in MachineLogic

� How to setup the data configuration

MachineLogic Runtime Reference Guide 4-1

Configuring MachineLogic Runtime

Inputs, outputs and the process

While the MachineLogic project is running, the control program receives input signals via the I/O modules.
These input signals are processed according to your settings in the control program. After the working cycle the
control program transmits the output signals to the I/O modules.

The way the control handles these signals is set up by the user via the I/O configuration in MachineLogic.
Depending on which version of MachineLogic you're running, you set up the I/O configuration differently. The
method used to setup the I/O configuration is also determined by the control project and depends on the specific
implementation of the I/O driver. This chapter explains the basic principles on configuration of data and I/O.

For more information see the documentation that came with MachineLogic.

* To determine which version of MachineLogic you're running, select the Help menu and then select
About.

Setting up the I/O configuration in MachineLogic 2.11

The I/O configuration in MachineLogic 2.11 is set up using the I/O Configuration dialog boxes. Double-click
IO_Configuration in the left pane (located within the subtree 'Physical Hardware' of the project tree) to launch
the I/O Configuration dialog boxes.

To set up the I/O configuration you must declare the I/O module groups.

Declaring the I/O groups
Select the Input tab for input I/O groups, or select the Output tab for output I/O groups. Click the Add button to
launch the Add I/O Group dialog box.

Enter a module name for the I/O group in the Name field. The module name is not automatically identical to the
module identifier assigned by the I/O manufacturer. It is just the structure of the I/O configuration. According to
your application task it may be useful to declare each I/O group as one I/O module in MachineLogic 2.11.

You must also associate the I/O group to a task. Select from the Task list box.

* You must always associate a program to a task. Associating a task ensures that the inputs are always
read at the beginning and the outputs are always written at the end of the associated task and that the
data which are processed are consistent.

4-2 MachineLogic Runtime Reference Guide

Declaring the logical addresses
Declare the logical addresses using the Add I/O Group dialog box. Enter the starting address in the Start
Address field. The starting address is in bytes of memory.

Enter the number of bytes to reserve for the I/O group address in the Length field.

* It might be useful to leave some memory addresses free among the different I/O modules. If you have
to extend your I/O configuration later, it will be possible to use these free addresses and there will be
no need to change the whole I/O configuration.

Declaring the I/O driver
Declare the I/O driver using the Add I/O Group dialog box. Select your driver from the Board / IO Module field
and click the Driver Parameter button.

Using a driver automatically means that the data are read at the beginning of a working cycle of the task and that
they are written to the I/O at the end of the working cycle. To use a driver you have to add parameters to your
I/O configuration.

	 Please refer to your driver online help or documentation for more information on setting up the
driver.

Setting up the I/O configuration in earlier versions of MachineLogic

The I/O configuration in earlier versions of MachineLogic is set up using the I/O configuration editor. The I/O
configuration editor is called by double-clicking the icon 'I/O configuration' located within the subtree 'Physical
Hardware' of the project tree. For all versions of MachineLogic earlier than 2.11, you edit the I/O configuration
by just entering the appropriate lines in the right pane.

To set up the I/O configuration you must declare the I/O module groups.

Declaring the I/O groups
In the first line of an I/O configuration the I/O group is introduced. According to your application task it may be
useful to declare each I/O group as one I/O module in MachineLogic.

In the I/O configuration an I/O module has to be declared with the keyword 'PROGRAM'. For example:

Syntax:
PROGRAM module name WITH task name : module type

Example:
PROGRAM module_1 WITH fast_task : INPUT

Figure 4-2: Declaring the I/O group

MachineLogic Runtime Reference Guide 4-3

The module name can be chosen by the user. The module name is not automatically identical to the module
identifier assigned by the I/O manufacturer. It is just the structure of the I/O configuration.

You MUST associate a program to a task. There is no Default task within MachineLogic Runtime.

* You must always associate a program to a task. Associating a task ensures that the inputs are always
read at the beginning and the outputs are always written at the end of the associated task and that the
data which are processed are consistent.

For input modules the module type 'INPUT' and for output modules the module type 'OUTPUT' have to be used.

Declaring the logical addresses
In the second line the logical addresses for the I/O groups are declared. This means that bytes of the inputs or
outputs of the I/O module are assigned to a memory region in the MachineLogic Runtime memory. An example
is shown in the following figure.

Syntax:
VAR_ADR := value,
END_VAR_ADR := value,

Example:
VAR_ADR := 0,
END_VAR_ADR := 3;

Figure 4-3: Declaring the memory addresses for the I/O group

The line beginning with the keyword VAR_ADR indicates the first memory address where the first input or
output byte of the I/O module is stored. END_VAR_ADR specifies the last memory address for this I/O module.

* It might be useful to leave some memory addresses free among the different I/O modules. If you have
to extend your I/O configuration later, it will be possible to use these free addresses and there will be
no need to change the whole I/O configuration.

Declaring the I/O driver
In the following lines of the I/O configuration more parameters have to be used for declaring the I/O driver.

Using a driver automatically means that the data are read at the beginning of a working cycle of the task and that
they are written to the I/O at the end of the working cycle. To use a driver you have to add the following
parameters to your I/O configuration.

DEVICE := DRIVER,
DRIVER_NAME := 'driver name',
DRIVER_PAR1 := parameter, (*optional*)
DRIVER_PAR2 := parameter, (*optional*)
DRIVER_PAR3 := parameter, (*optional*)
DRIVER_PAR4 := parameter, (*optional*)

Figure 4-4: Declaring the I/O driver

4-4 MachineLogic Runtime Reference Guide

	 Please refer to your driver online help or documentation for the driver name and the parameters to
include.

Setting up the data configuration

The Data Area dialog box:

Figure 4-2: Data Area Dialog

* Keep the Declare user memory at I/O configuration automatically check box checked so that the I/O
configuration is updated automatically whenever you change the Direct Non-retain memory region in
the Data Area dialog box.

Configuration of the following memory areas is accomplished through the data configuration. Memory for non-
retentive and retentive user flags (directly represented or direct 'M' variables) and for automatically direct
MachineLogic flags being non-retentive and retentive (symbolic variables) can be configured. This should be
only done if you want to use directly represented or direct 'M' variables (flags) in MachineLogic (e.g.
'MYVAR AT %MX0.0 : BOOL;') or if the memory for non-direct variables has been used up.

The settings of the data areas are located on the dialog 'Data Area' of MachineLogic . The dialog 'Data Area'
appears when clicking the button 'Data area...' in the dialog 'Resource settings...'. The dialog fields and buttons
have the following meanings:

• Start user: Specifies the address where the memory area for direct addressing starts.
• End user / Start system: Specifies the address where the memory area for non-direct addressing starts.

MachineLogic Runtime Reference Guide 4-5

• End system: Specifies the address where the memory area for non-direct addressing ends.
• Reserve per POU: Specifies the memory reserve for a POU used for Patch POU.

 The reserve can be entered in % or in bytes.

The checkbox 'Declare user memory in I/O configuration automatically' automatically creates a hidden entry
(VAR_CONF) in the I/O configuration containing the memory areas set in this dialog. The activation of the
checkbox is required if user flags are used.

MachineLogic does an automatic calculation of the data areas that are necessary to store the MachineLogic non-
direct variables, including the memory reserve. The advantage is that only the specific memory of the
MachineLogic project is allocated to the MachineLogic Runtime target. This automatic calculation is not done
for directed variable areas. Therefore the full size of the configured directed variable areas is allocated if the
already mentioned checkbox has been activated. To obtain information about the project size and the required
memory space for non-directed variables click on the sheet tab 'Infos' in the message window to display this
information after compiling.

* Please note that MachineLogic does not check any overlaps of the directed variables logical addresses
with the MachineLogic non-directed variable addresses.

* When downloading, MachineLogic Runtime checks all variables and their logical addresses being
used in a control program. If a program contains variables having logical addresses not matching a
configured data area, the following error message occurs in MachineLogic Runtime: 'Operand not
implemented or area exceeded at ...'

The settings in the dialog 'Data Area' and the automatic calculation of the data areas for MachineLogic variables
result in a hidden entry (VAR_CONF) in the I/O configuration in MachineLogic. The maximum data areas are
limited according to the settings in the dialog and the specific limits of the control type specified by the file
'LIMITS.REF'. The beginning of the user memory areas in the dialog also depends on the file 'LIMITS.REF'.

A fixed syntax is used for the data configuration. The default address range for user flags varies according to
your hardware configuration.

MachineLogic Runtime Reference Guide Control Applications and MachineLogic Runtime

Control Applications
and MachineLogic
Runtime

This chapter provides information about:

� Configurations and resources

� Tasks

� Error handling in MachineLogic Runtime and SPGs

� Programs

� Preemptive scheduling

MachineLogic Runtime Reference Guide 5-1

Control Applications and
MachineLogic Runtime

The control application in the MachineLogic Runtime memory

A control application is structured in the MachineLogic Runtime memory as shown in the following figure.

Program
Local variables
code body
 incl. calls

Program
Local variables
code body
 incl. calls

user task 1 user task 16

Tasks Variables
Global
variables

Functions
Local variables
code body
 incl. calls of
 functions

Function blocks
Local variables
code body
 incl. calls of
 function blocks

Resource

Figure 5-1: Structure of a control application in MachineLogic Runtime

Configurations and resources

According to IEC 1131-3 a control system consists of several configuration elements. The configuration element
can be compared to a complete control program since it includes all elements with some I/O. A configuration
contains one or several resources. A resource corresponds to an application for a control. It can be compared to
a CPU.

A resource contains the task definitions and the definitions of all programs, function blocks, functions and
variables. MachineLogic Runtime is able to handle several tasks within one resource. In MachineLogic Runtime
the Programmable Controller System configuration and the resource have the same functionality. Nevertheless it
is necessary to declare one configuration and one resource in the subtree 'Physical Hardware' of the project tree.

In MachineLogic, the Resource folder is found in the path Project\Physical Hardware\Configuration in the left
pane.

5-2 MachineLogic Runtime Reference Guide

How to declare resources in MachineLogic
• Insert the resource into the subtree 'Physical Hardware' of the project tree.
• Choose the resource settings in the dialog 'Resource settings...'. To display this dialog, right-click the

Resource folder and select 'Settings...'.

	 You can select between 64K and 128K in the Resource Settings. Refer to the MachineLogic help for
detailed information about inserting configurations, resources, and resource settings.

Tasks and MachineLogic Runtime

With the MLSC, MachineLogic Runtime is executed on the slot card itself. The execution is also controlled by
task priorities. Four task levels are used in MachineLogic Runtime in addition to Interact:

• TCP/IP execution
• Supervisor task level
• User task level
• MachineLogic Runtime task level
• Interact

Figure 5-3: MLSC task levels in MachineLogic Runtime

MachineLogic Runtime Reference Guide 5-3

Runtime and task description
MachineLogic Runtime itself consists of several tasks such as communication task, debug task, memory
management task, and system control task. All these tasks are running in a specific priority level called
MachineLogic Runtime task level.

User tasks are all tasks specified by the application programmer that rely on the IEC 1131-3 programming
languages. User tasks also rely on the execution control of the programs under the control of tasks. These kinds
of tasks run in the specific user task level. This means that all user-defined priorities are not absolute but relative
to the user task level. The settings for these tasks are configured in MachineLogic. Interact does not belong to
any user task and, thus, only executes when no other MachineLogic task is executing.

In MachineLogic Runtime there is a special protected task level: the supervisor level. The supervisor task
detects errors such as division by zero or excess of execution time and activates the corresponding system task.

User tasks

User tasks have to be declared by the programmer. In MachineLogic Runtime several user tasks can be used.
The different task types offer different characteristics for different application purposes.

Cyclic tasks
Cyclic tasks are executed in a fixed time interval. They are executed according to their priority, which is set in
the dialog 'Task settings...'. This dialog is available by selecting the menu item 'Settings...' located in the context
menu of the task in the subtree 'Physical Hardware' of the project tree. The priority value range is from 0 to 31
where 0 is the highest priority.

If the watchdog time of a cyclic task is higher than the configured interval time and the execution of the task is
not finished before the end of the configured interval time is reached, one or more execution cycles are skipped.

System tasks
System tasks can be used in MachineLogic Runtime and MachineLogic. The system tasks are initial tasks and
error tasks. System tasks are executed if the control program is started or if an error occurs. In both cases
MachineLogic Runtime knows which system program has to be executed.

* System tasks are not supervised by the watchdog because they are not executed in the context of a
user task.

System programs or SPGs are programs which are called automatically by MachineLogic Runtime if an error or
a change of the operational state of the control program occurs. Different types of system programs are available
as shown in the following table:

5-4 MachineLogic Runtime Reference Guide

No. Name Meaning Actions

SPG 0 WARM_START is executed if a warm start is done • retentive data are not initialized
• non-retentive data are initialized
• the open function of the I/O

driver is executed
• user tasks are activated
• control passes into the 'RUN'

state
SPG 1 COLD_START is executed if a cold start is done • all data are initialized

• the open function of the I/O
driver is executed

• user tasks are activated
• control passes into the 'RUN'

state
SPG 2 TO_STOP is executed if the program execution is

stopped
• user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state
SPG 10 WATCHDOG is executed if the execution of a task has

not been finished within its watchdog time
• user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state
SPG 11 ZERODIV is executed if a division by zero occurs

during the program execution
• user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state
SPG 12 STACKOVER is executed if a stack overflow happens.

Only executed if the check box 'Stack
check' has been activated in the dialog
'Resource settings...' in MachineLogic

• user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state
SPG 13 BADCAL is executed if a firmware POU is called

which does not exist
• user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state
SPG 14 IOERROR is executed if an error in the I/O driver

occurs while the process is running
• control continues

*SPG 16 MATHERR is executed if a floating point error in an
arithmetic function occurs

• user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed

MachineLogic Runtime Reference Guide 5-5

No. Name Meaning Actions

• control passes into the 'STOP'
state

SPG 17 CPU_OVERLOAD is executed if a CPU overload occurs • user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state
SPG 18 INITIODRV_ERR is executed if an error occurs while

initializing the I/O driver during a cold or a
warm start

• control is not started

SPG 19 BOUNDS_ERR is executed if the bounds of an array or
structure have been exceeded. Only
executed if the check box 'Index check' or
the check box 'Array boundary check' has
been activated in the dialog 'Resource
settings...' in MachineLogic

• user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state
SPG 20 BUS_ERR is executed if variables with location and

data type ≥ 2 bytes have been used with
odd addresses or if there has been an
internal error in MachineLogic. Only in
case of Motorola platforms.

• user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state
SPG 21 STRING_ERR is executed if an error during a string

operation appears, e.g. a string should be
replaced by another but it is not found.

The behavior of a string exception
has changed. In the default
configuration the SPG 21 is called
after a string exception occurs and
an entry in the error catalog is made
including the module and the line
number. The control stays in the
'RUN' state.
In MachineLogic Runtime the
behavior is defined as the following
if the “Stack check on PLC” check
box, located on the Resource
settings dialog, is checked:
• all user tasks are deactivated
• all outputs are updated
• the close function of the I/O

driver is executed
• control passes into the 'STOP'

state

* *The action described for SPG16 is accurate if MachineLogic Runtime is the ONLY program
running that uses floating point operations. If another program (such as Interact or the MachineShop
Shell) using floating point math is running, or has run, from the DOS command prompt, then SPG16
does not execute upon a divide_by_zero error. Instead, the result (quotient) is represented as
INFINITY, and the control continues in the 'RUN' state. Refer to Chapter 7 for more information.

5-6 MachineLogic Runtime Reference Guide

How to declare user tasks in MachineLogic
• Insert the task in the subtree 'Physical Hardware' of the project tree.
• Configure the task settings in the dialog 'Task settings...'. To open this dialog, right-click the folder with your

task name (for example MyTask1) in the left pane and select 'Settings...'.
• Associate programs to the task.

	 Refer to the MachineLogic help for detailed information about inserting tasks and task settings.

How to use system tasks and SPGs in case of MachineLogic Runtime errors
If a runtime error occurs in MachineLogic Runtime, such as a division by zero or a stack overflow, the
corresponding SPG is automatically executed without any programming effort from the application programmer.

If any additional functionality is needed such as setting all outputs to zero, the application programmer has the
ability to edit the corresponding code in MachineLogic.

* The function block CLR_OUT can be used to set all outputs to zero. The functions
COLD_RESTART, WARM_RESTART, HOT_RESTART and CONTINUE can be used to restart or
continue the program execution. These functions and function blocks are described in the online help.

To edit the additional functionality in MachineLogic:

• Edit a program with the code body containing the additional functionality in the subtree 'Logical POUs' of

the project tree.
• Insert a task of the type 'SYSTEM' in the subtree 'Physical Hardware' of the project tree.
• Display the dialog 'Task settings...' to choose the SPG where you want to add the functionality.
• Associate the program to the system task.

Tasks and watchdogs

In MachineLogic Runtime each user-defined task has its own adjustable watchdog. This watchdog checks if the
task execution has been finished at the end of the watchdog time interval. If it has not been finished, the system
task SPG 10 'WATCHDOG' is executed and the control passes into the 'STOP' state if no other actions are
programmed. An entry in the error catalog of MachineLogic Runtime is also made. The watchdog time interval
starts when the task is ready for execution. The watchdog time interval is set in the dialog 'Task settings...' in
MachineLogic. The 'Task settings…' dialog is discussed later this chapter.

If the task execution time and the watchdog time have nearly the same value and there is a high CPU load, the
watchdog time could possibly be exceeded while completing some online operations.

* One cause for this behavior may be that you have activated the address status with powerflow while
debugging in online mode.

Online operations which cause a reading or writing access on the hard disk may also interrupt the task execution
for a short time. These online operations are:

MachineLogic Runtime Reference Guide 5-7

• Calling the dialog 'Resource:resource name' by clicking on the 'Info' button in the control dialog
• Downloading the boot project
• Downloading a zipped project

The following figure shows that a task exceeds its watchdog time because the execution of the task is interrupted
for a short period of time, multiple times.

task task

t [ms]
10 20 30 40

Interruption of task execution because of task switching or
writing to hard disk

Figure 5-7: Tasks and Watchdog Times

In the example the watchdog time of the task is set to 10 ms. The task exceeds its watchdog time at 20 ms. If the
watchdog time of the task is set to 20 ms, it is executed for the next time at 30 ms. In this case one task
execution at 20 ms is skipped.

Tasks and programs

Programs are program organization units or POUs as defined in IEC 1131-3. The code bodies for programs are
edited in MachineLogic. Within these programs other programs, function blocks, or functions can be called.
Programs have to be associated to a task. Associating a program to a task means that the program is executed
when the task is activated. In MachineLogic Runtime and MachineLogic it is possible to associate several
programs to one task. In those cases the first program in the task directory is executed first. Then the program
below is executed and so on.

	 Please refer to the MachineLogic help and documentation for detailed information about programs.

How to use programs in MachineLogic
• Insert the program in the subtree 'Logical POUs' of the project tree.
• Edit the code body.
• Perform the variable declaration.
• Compile the program.
• Associate the program to a task.

5-8 MachineLogic Runtime Reference Guide

Tasks and preemptive scheduling

Let us assume we have a project with five user tasks and an Interact application. The tasks have the following
properties.

Task Priority Interval Setting
A 0 5ms
B 1 10ms
C 2 15ms
D 3 4ms
E 4 8ms

Interact NA NA

At first the task having the highest priority (Task A) is executed. Then the task with the next lower priority (Task
B) is executed. The programs associated to the task are executed according to their appearance in the project
tree. After all tasks are executed then Interact is executed.

The data for a task that is interrupted is written to the stack. After a higher priority task finishes executing, the
data for the lower priority task is read from the stack and execution is finished. These system level tasks are
shown in figures 5-2 and 5-3.

This task switching with interrupting tasks with lower priority is called pre-emptive scheduling. The resulting
task schedule is shown in the following figure.

Figure 5-4: Tasks and preemptive scheduling

MachineLogic Runtime Reference Guide 5-9

MachineLogic Runtime Reference Guide Downloading, Controlling and Debugging

Downloading,
Controlling and
Debugging

This chapter provides information about:

� Downloading

� Projects and bootprojects

� Operational states

� Controlling and operational states

� Debugging and operational states

� System flags

MachineLogic Runtime Reference Guide 6-1

Downloading, Controlling and
Debugging

Downloading

Before downloading an application to MachineLogic Runtime you have to compile it in MachineLogic.
Downloading means sending the project to the target, which in this case is a PowerStation. Downloading is
accomplished by pressing the button 'Download' in the control dialog in MachineLogic, and by pressing the
corresponding button in the dialog 'Download' which appears automatically.

Several possibilities of download can be used with MachineLogic Runtime:

• Downloading a project
• Downloading a zipped project
• Downloading a boot project

Downloading a project means that the full project including POUs and the configuration data are downloaded to
the MachineLogic Runtime memory of the target. The control passes into the 'STOP' state. The project does not
remain in memory if you switch off the control or if there is a power failure.

To start program execution after download, MachineLogic Runtime first determines if a warm start is even
possible. If a warm start is possible, you have two options: either cold start or warm start. If a warm start is not
possible, then a cold start is automatically performed.

During a cold start all data are initialized. During a warm start only non-retentive data are initialized.

Downloading a zipped project means that the project is zipped first and then downloaded to the runtime
workstation. The zipped project can be uploaded via the dialog 'Upload' in MachineLogic. The zipped project
should be downloaded for documentation purposes if application development has been finished and taken into
operation.

Downloading a boot project means downloading a full project including the POUs and the configuration data to
the hard drive of the target. The boot project remains on the hard drive if you switch off the runtime workstation
or if there is a power failure. In case of switching the runtime workstation on, the boot project is loaded and the
program execution is automatically started.

	 Refer to the MachineLogic help for more information about downloading.

Operational states in MachineLogic Runtime

MachineLogic Runtime works with four different operational states:

6-2 MachineLogic Runtime Reference Guide

Operational state Description of the operational state

POWER ON • power supply is on
• no program is loaded

STOP • program is loaded
• user tasks are inactive
• inputs of the I/O image are not updated
• output signals are not transmitted to the I/Os

RUN • program execution is activated
• user tasks are active
• inputs of the I/O image are updated according to the I/O

configuration
• outputs of the I/O image are updated according to the I/O

configuration and the program execution
HALT • program execution is halted at a breakpoint

• user tasks are inactive
• inputs of the I/O image are not updated
• outputs of the I/O image are not updated

The current state of the control program is displayed either on the top of the control dialog or in the dialog
'Resource: resource name' in MachineLogic. If 'debug' is displayed behind the current state in the control dialog,
it means that breakpoints have been set or variables have been forced.

Changing the operational states - overview

Using the control dialog in MachineLogic you can change the operational state of the control program. The
following figure shows from which state you can switch to another. The names of the buttons in the control
dialog are written next to the arrows. The buttons for changes that cannot be done in the current state are grayed
in the control dialog.

MachineLogic Runtime Reference Guide 6-3

Figure 6-1: Changing into different operational state

Controlling and changing operational states

From MachineLogic you can control the control program; for example, starting and stopping the program
execution. The following section describes how to change the states and what happens on MachineLogic
Runtime.

Starting the program execution

State is changed
from Æ to

Button to press in
the control dialog

Description

Stop Æ Run

• a cold start is done
• all data are initialized
• SPG 1 is called
• all user tasks are activated
• the program execution is activated

Stop Æ Run

• a warm start is done
• only non-retentive data are initialized
• SPG 0 is called
• all user tasks are activated
• the program execution is activated

Stop Æ Run

• a hot start is done
• no data are initialized
• all user tasks are activated
• the program execution is activated
• Not available in case of starting the program execution

for the first time after downloading

Stopping the program execution

State is changed
from Æ to

Button to press in
the control dialog

Description

Run Æ Stop

• all user tasks are set inactive having finished their
working cycle

• SPG 2 is called
• the outputs of the I/O image are written
• the program execution is stopped
• according to the I/O driver the physical outputs are

written or not

General reset

State is changed
from Æ to

Button to press in
the control dialog

Description

6-4 MachineLogic Runtime Reference Guide

State is changed
from Æ to

Button to press in
the control dialog

Description

Stop Æ Power on

• the project is deleted
• a general reset is done

Debugging and online mode

While the control is running, several functions for debugging your control program can be used in
MachineLogic Runtime.

The following debug possibilities are available for MachineLogic Runtime:

• Viewing the current variable values represented with colors in the worksheets in online mode
• Switching between variable status and address status with powerflow
• Forcing and overwriting variables
• Setting and resetting breakpoints

All these functions can be handled via the graphical user interface of MachineLogic, where you can open the
worksheets in online mode using the instance tree. For information on how to use the online mode refer to the
MachineLogic help.

* Using the address status with powerflow means that the program execution of the first task
inserted in the project tree is interrupted just for a short time to read the current values of all
variables. In case of a great number of addresses to be read the real-time conditions may not
be met.

Debugging and operational states

Debugging with set breakpoints

Operational state Button to press in
the control dialog

Description

Halt [Debug]

• only available if a breakpoint has been set
• goes to the next breakpoint and halts the program

execution at this point
Halt [Debug]

• only available if a breakpoint has been set
• goes to the next line or object and halts the program

execution at this point
• if a function or function block call is reached, the

function or function block code body is opened for
debugging

Halt [Debug]

• only available if a breakpoint has been set

MachineLogic Runtime Reference Guide 6-5

Operational state Button to press in
the control dialog

Description

• goes to the next line or object and halts the program
execution at this point

• if a function or function block call is reached, the call is
stepped over and the next line is highlighted

• if the end of a program is reached, the next STEP
command starts the program execution at the beginning
of the program. The program is stopped at the next
breakpoint

• if the end of a function or function block is reached , the
next STEP command continues the program debugging at
the caller of the function or function block

Stopping the control while debugging

State is changed
from Æ to

Button to press in
the control dialog

Description

Halt [Debug] Æ
Stop [Debug]

• all user tasks are set inactive having finished their
working cycle

• SPG 2 is called
• the outputs of the I/O image are written
• the program execution is stopped
• according to the I/O driver the physical outputs are

written or not

System flags

System flags are flags giving information about the system state such as forced variables, CPU performance etc.
These flags have fixed memory addresses and can be used by the control program to get this information.

All system flags in the following table are already declared as global variables in the global variable worksheet
if you are creating a project in MachineLogic. To use them in POUs just declare a non-direct variable in the
variable worksheet of the POU using the keyword VAR_EXTERNAL and the name of the system flag as the
variable name.

The system flags are shown in the following table:

Name Data

type
Logical
address
(Byte)

Logical
address
(Bit)

Description

PLCMODE_ON BOOL 0 0 TRUE := current control mode is POWER ON
PLCMODE_RUN BOOL 0 1 TRUE := current control mode is RUN
PLCMODE_STOP BOOL 0 2 TRUE := current control mode is STOP
PLCMODE_HALT BOOL 0 3 TRUE := current control mode is HALT
PLCDEBUG_BPSET BOOL 1 4 TRUE := one or more breakpoints are set

6-6 MachineLogic Runtime Reference Guide

Name Data
type

Logical
address
(Byte)

Logical
address
(Bit)

Description

PLCDEBUG_FORCE BOOL 2 0 TRUE := one or more variables are forced
PLCDEBUG_POWERFLOW BOOL 2 3 TRUE := powerflow is active
PLC_TICKS_PER_SEC INT 44 - Number of system ticks per second used by

MachineLogic Runtime as the system time
base. This value defines the time resolution of
MachineLogic Runtime for timer function
blocks like TON, TOF, or TP and the shortest
cycle time of Interact and cyclic tasks.

PLC_SYS_TICK_CNT DINT 52 - Number of counted MachineLogic Runtime
system ticks.

In addition to these system flags visible in the declaration of global variables, system flags containing task and
error information can be used for special purposes.

User task information
The system flags shown in the following table are available for each user task:

Name Data type Logical

address
Description

CURDURATION INT 1032 Current task duration including preemptive scheduling
in ticks

MINDURATION INT 1034 Minimum task duration in ticks
MAXDURATION INT 1036 Maximum task duration in ticks
CURDELAY INT 1040 Current task delay in ticks
MINDELAY INT 1042 Minimum task delay in ticks
MAXDELAY INT 1044 Maximum task delay in ticks

If there is more than one user task, the logical address for the next user task information is calculated by 1032 +
N*64 where N is the task number. In this case the current task duration for the next user task is located at 1096.

To use these system flags the logical address is to be inserted in the field 'AT' in the dialog 'Declaration of
variables or FB instances' in MachineLogic.

For example, if you want to declare the system flag CURDURATION you have to insert in the field 'AT':

% MW1.1032

Error catalog information
The system flags of the error catalog are shown in the following table:

Name Data type Logical

address
Description

PLC_MAX_ERR INT 60 Maximum size of the MachineLogic Runtime error
catalog

PLC_ERR_CNT INT 62 Current number of errors beginning at location %MD
1.64

ERROR DWORD 64 First error number
ERROR_N DWORD 68 Next logical address of error number is calculated by

64 + N*4 where N is the error index

MachineLogic Runtime Reference Guide 6-7

To use these system flags, set the corresponding variable declaration in the global variable worksheet of the
resource.

MachineLogic Runtime Reference Guide MachineLogic Runtime Data Types

MachineLogic
Runtime Data
Types

This chapter provides information about:

� How MachineLogic reacts upon the detection of a

floating point error condition

� How to use string data types in control programs

MachineLogic Runtime Reference Guide 7-1

MachineLogic Runtime Data Types

Real Numbers

This section describes how MachineLogic Runtime reacts upon detection of floating point error conditions.

Error treatment of real numbers
MachineLogic Runtime reacts to floating point errors differently, depending on whether or not it is the only
program running that uses floating point math operations. If MachineLogic is the only program running, then
SPG16 is executed (if one exists) upon detection of a math error, followed by this sequence of actions:

• user tasks are deactivated
• all outputs are updated
• the close function of the I/O driver is executed
• the control passes into the 'STOP' state

If another program (such as Interact or the MachineShop Shell) using floating point math is running, or has run,
from the DOS command prompt, then SPG16 does not execute upon a divide_by_zero error. Instead, the result
(quotient) is represented as INFINITY, and the control continues in the 'RUN' state.

* There is a known problem with the floating point error detection when using the DIV_T_R (Divide
Time by Real) function. If the divisor is allowed to be 0.0, it can cause a sudden and unexpected
system failure. To prevent this, we recommend that this function not be used. If it is absolutely
necessary to use this function in your application, we recommend that a LIMIT_REAL function be
used in conjunction with DIV_T_R to prevent the divisor from reaching a value of 0.0, as shown
below:

7-2 MachineLogic Runtime Reference Guide

Strings

This section describes how to use string data types in control programs. Also described is how to format strings
with the provided MachineLogic string functions.

Error treatment of string errors
As described in the chapter "Control application and MachineLogic Runtime", only the SPG 21 is called after a
string error occurs and an entry in the error catalog is made including the module and the line number. In a
customer-specific MachineLogic Runtime version this behavior may be different.

* As the default configuration only the exception (SPG 21) is generated. If a string error occurs the
control is not stopped.

The error reaction of the string functions is described in the following table.

String function Error condition Error reaction
LEFT L > len(IN)

L > maxlen(OUT)
OUT =''

RIGHT L > len(IN)
L > maxlen(OUT)

OUT =''

MID L > maxlen(OUT)
P < 0
P+L > len(IN)

OUT =''

CONCAT len(IN1) + len(IN2) > maxlen(OUT)
IN2 == OUT

OUT =''

INSERT len(IN1) + len(IN2) > maxlen(OUT)
P < 0
P > len(IN1)
IN2 == OUT

OUT =''

DELETE len(IN) – L > maxlen(OUT)
P+L > len(IN)
P < 0

OUT =''

REPLACE len(IN) – L + len(IN2) > maxlen(OUT)
IN2 == OUT
P+L > len(IN1)
P < 0

OUT =''

FIND -- --
ASSIGN (:=,MOVE, ST) len(IN) > maxlen(OUT) OUT =''
*_TO_STRING please refer chapter *_TO_STRING OUT =''
STRING_TO_* please refer chapter STRING_TO* Value = 0

*
The identifiers L,P,IN,... represent the parameter of the string functions in the IEC language FBD.
'len(...)' represents the actual string length and 'maxlen(...)' the maximum string length allowed
(maxlen(Default string) = 80).

MachineLogic Runtime Reference Guide 7-3

STRING_TO_*
The functions STRING_TO_* are used to generate a number from a string which includes a value. In the
following some rules for numeric literals are described. These numeric literals can be connected to the several
STRING_TO_* functions.

General rules
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
hexDigit ::= digit | 'A' | 'B' | 'C' | 'D' | 'E' | 'F' |'a' | 'b' | 'c' | 'd' | 'e' | 'f'
integer ::= digit{['_'] digit}
realInteger ::= digit{digit}
signedRealInteger ::= ['+'|'-'] realInteger
exponent ::= ('E'| 'e')signedRealInteger
bitStream ::= BYTE | WORD | DWORD
unsignedTyp ::= USINT | UINT | UDINT
signedTyp ::= SINT | INT | DINT
timeTyp ::= 'T' | 't' | 'TIME' | 'time'

Allowed literal for the functions STRING_TO_BYTE, _WORD and _DWORD
hexInteger := 16#hexDigit{['_'] hexDigit}
bitStreamLiteral ::= [bitStream '#']digit{['_'] digit}

Allowed literal for the functions STRING_TO_SINT, _INT and _DINT
signedLiteral ::= [signedTyp '#'] ['+'|'-'] integer

Allowed literal for the functions STRING_TO_USINT, _UINT and _DINT
unsignedLiteral ::= [unsignedTyp '#'] digit{['_'] digit}

Allowed literal for the function STRING_TO_REAL
realLiteral ::= ['REAL' '#'] signedRealInteger'.'realInteger [exponent]

Allowed literal for the function STRING_TO_TIME
durationLiteral ::= timeTyp '#' digit{digit} ['ms' | 'MS']

Errors which may occur during the value transformation
• The connected string represents a literal which is not valid for this data type.

Example:

 STRING_TO_TIME

'INT#123' timeVar

7-4 MachineLogic Runtime Reference Guide

• The value is out of the range for the specified data type.
Example:

 STRING_TO_BYTE

'16#1024' byteVar

• The value does not fit to the literal.

Example:

 STRING_TO_DINT

'INT#100000' dintVar

• The connected string is empty.

Example:

 STRING_TO_BYTE

'' byteVar

Error reaction
In the error conditions, described above, the result variable gets the value '0'. If the connected string is empty
(even no blanks), the program is not interrupted. In all other cases the program checks whether the exception
handling is enabled and the error process is started. For more information see the chapter 'Error treatment of
string errors'.

Specialty of transformation
The program searches for the first occurrence of the character '#' in the connected string. If this character is
found, an evaluation of the type or format identifier in front of this character is done. In principle it is possible to
transform a number which is embedded in a string.

Example: 'Jack is INT#40 years old' Result: 40

The further evaluation is performed if the character '#' is not included in the string. If this character is not found
in the string, the evaluation starts at the beginning of the string. All white spaces are skipped until the first
character that is not a white space is found.

The evaluation is stopped if a character that is not a valid literal is found. The evaluation of the strings
'INT#50 J' and 'INT#50J' gives the result value of 50 for both.

MachineLogic Runtime Reference Guide 7-5

*
ASCII codes regarded as 'white spaces':

 Character Value
 horizontal tab 9 (09h)
 line feed 10 (0Ah)
 vertical tab 11 (0Bh)
 form feed 12 (0Ch)
 carriage return 13 (0Dh)
 blank 32 (20h)

*TO_STRING
The functions *_TO_STRING are used to put the value of a number into a string. Because you can create the
text according to special conceptions, the functions get a format string that can include the conversion
instructions.

Principle construction of the conversion instructions
digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
convertStr ::= '%'[width]['.'precision]['l'] typ
width ::= [0] digit {digit}
precision ::= digit {digit}
typ ::='d' | 'u' | 'x' | 'X' | 'e' | 'E' | 'f'

Valid conversion instructions of BYTE_, WORD_ and DWORD_TO_STRING
convStr ::= '%'[width]['.'precision]['l']('u' | 'x' | 'X')

Valid conversion instructions of SINT_, INT_ and DINT_TO_STRING
convStr ::= '%'[width]['.'precision]['l']('d')

Valid conversion instructions of USINT_, UINT_ and UDINT_TO_STRING
convStr ::= '%'[width]['.'precision]['l']('u')

Valid conversion instructions of REAL_TO_STRING
convStr ::= '%'[width]['.'precision]['l']('e' | 'E' | 'f')

Valid conversion instructions of TIME_TO_STRING
convStr ::= '%'[width]['.'precision]['l']('u')

Description of the optional instructions
Width
The optional instruction 'width' indicates how many characters are to put out at minimal. If necessary the output
is padded with '0' (if a 0 is set before 'width') or with white spaces.

Precision
The optional instruction 'precision' indicates, how many characters are to put out at maximal, respectively the
amount of significant decimal positions for the data type REAL.

7-6 MachineLogic Runtime Reference Guide

Construction of the format string
Every conversion instruction may be embedded into a string. An example format string:

 'Jack is INT#%ld years old'.

In this example the conversion instruction is shown in italic letters.

*
If the character '%' appears in the string, the character must be put into the format string, twice.

Standard format strings for BYTE_, WORD_ and DWORD_TO_STRING
'16#lX'

Standard format strings for SINT_, INT_ and DINT_TO_STRING
'%ld'

Standard format strings for USINT_, UINT_ and UDINT_TO_STRING
'%lu'

Standard format strings for REAL_TO_STRING
'%lE'

Standard format strings for TIME_TO_STRING
'T#%lu ms'

*
The standard format strings are valid if an empty string is connected as format string.

Errors that may occur during the transformation
• Illegal or no conversion instruction

Example:
 INT_TO_STRING
intVar
 outStr
'%f'

 INT_TO_STRING
iIntVar
 outStr
'Karl-Heinz'

MachineLogic Runtime Reference Guide 7-7

• The result string exceeds the maximum allowed length of the connected output string.

Error reaction
In the error conditions, described above, the output string is cleared. Then the program checks whether the
exception handling is enabled and the error process is started. For more information see the chapter 'Error
treatment of string errors'.

IEC Compliance
List

This chapter provides information about...

the IEC compliance list

MachineLogic Runtime Reference Guide Compliance List • 1

IEC compliance list

This document describes the available features with MachineLogic Development and Runtime, as relates to
the IEC 1131 compliance list.

MachineLogic
Version

MachineLogic
Runtime
Version

Feature

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

2.1.3 Table 1 Character set

1 Windows character set

2 Lower case characters

3a Number sign (#)

4a Dollar sign ($)

5a Vertical bar (|)

6a left and right brackets "[]"

2.0 3.0

2.1.3 Table 2 Identifier features

3 Upper and lower case, numbers, leading or
embedded underlines

2.0 3.0 2.1.5 Table 3 Comments

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.2.1 Table 4 Numeric literals

1 Integer literals

2 Real literals

3 Real literals with exponents

4 Base 2 literals

5 Base 8 literals

6 Base 16 literals

8 Boolean FALSE and TRUE

2.0 3.0 2.2.2 Table 5 Character string literal features

2 Compliance list MachineLogic Runtime Reference Guide

2.0

3.0

3.0

3.0

3.0

2.2.3.1 Table 7 Duration literal features

1a Short prefix without underlines

1b Long prefix without underlines

2a Short prefix with underlines

2b Long prefix with underlines

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.3.1 Table 10 Elementary data types

1 BOOL

2 SINT

3 INT

4 DINT

6 USINT

7 UINT

8 UDINT

10 REAL

12 TIME

16 STRING

17 BYTE

18 WORD

19 DWORD

2.0

2.0

3.0

3.0

2.3.3.1 Table 12 Data type declaration feature

4 Array data types

5 Structured data types

2.0 3.0 2.3.3.2 Table 13 Default initial values

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.4.1.3 Table 15 Directly represented variables

1 Input location

2 Output location

3 Memory location

4,5 Single bit size

6 Byte (8 bits) size

7 Word Size

8 Double word (32 bits) size

2.0 3.0

2.4.3 Table 16 Variable declaration keywords

VAR, VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT,

VAR_EXTERNAL, VAR_GLOBAL, AT, RETAIN

MachineLogic Runtime Reference Guide Compliance List • 3

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.4.3.1 Table 17 Variable type assignment features (-> Table 39)

1 Declaration of directly represented, non-retentive
variables

2 Declaration of directly represented, retentive
variables

3 Declaration of locations of symbolic variables

4 Array location assignment (arrays as derived data
type)

5 Automatic memory allocation of symbolic variables

7 Retentive array declaration (arrays as derived data
type)

8 Declaration of structured variables

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

2.4.3.2 Table 18 Variable initial value assignment features (Table 39)

1 Initialization of directly represented, non retentive
variables

2 Initialization of directly represented, retentive
variables

3 Location and initial value assignment to symbolic
variables

5 Initialization of symbolic variables

2.0

3.0

3.0

2.5.1.3 Table 19 Graphical negation of boolean signals

1 Negated input

2 Negated output

2.0 3.0

2.5.1.3 Table 20 Use of EN input and ENO output

3 FBD without "EN" and "ENO"

2.0 3.0 2.5.1.4 Table 21 Typed and overloaded functions

1 Overloaded functions

2 Typed functions

2.0 3.0 2.5.1.5.1 Table 22 Type conversion function features

1 *_TO_*

2 TRUNC

3 BCD_TO_*

4 *_TO_BCD

4 Compliance list MachineLogic Runtime Reference Guide

2.0 3.0 2.5.1.5.2 Table 23 Standard functions of one numeric variable

1 ABS

2 SQRT

3 LN

4 LOG

5 EXP

6 SIN

7 COS

8 TAN

9 ASIN

10 ACOS

11 ATAN

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.5.1.5.2 Table 24 Standard arithmetic functions

12 ADD

13 MUL

14 SUB

15 DIV

16 MOD

17 EXPT

18 MOVE

2.0 3.0 2.5.1.5.3 Table 25 Standard bit-shift functions (FBD overloaded, IL
typed)

1 SHL

2 SHR

3 ROR

4 ROL

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

2.5.1.5.3 Table 26 Standard bitwise boolean functions

5 AND

6 OR

7 XOR

8 NOT

MachineLogic Runtime Reference Guide Compliance List • 5

2.0 3.0 2.5.1.5.4 Table 27 Standard selection functions (typed, non
extensible)

1 SEL

2a MAX

2b MIN

3 LIMIT

2.0 3.0 2.5.1.4 Table 28 Standard comparison functions (non extensible,
typed for datatype STRING)

5 GT

6 GE

7 EQ

8 LE

9 LT

10 NE

2.0 3.0 2.5.1.5.5 Table 29 Standard character string functions

1 LEN

2 LEFT

3 RIGHT

4 MID

5 CONCAT

6 INSERT

7 DELETE

8 REPLACE

9 FIND

2.0 3.0 2.5.1.5.6 Table 30 Functions of time data type

1 ADD_T_T

4 SUB_T_T

10 MUL_T_AN

11 DIV_T_AN

2.0

2.0

3.0

3.0

2.5.2.2 Table 33 Function block declaration features (Table 39)

1 RETAIN qualifier on internal variables

4a Input/output declaration (textual)

2.0 3.0 2.5.2.3.1 Table 34 Standard bistable function blocks

1 SR

2 RS

6 Compliance list MachineLogic Runtime Reference Guide

2.0 3.0 2.5.2.3.2 Table 35 Standard edge detection function blocks

1 R_TRIG

2 F_TRIG

2.0 3.0 2.5.2.3.3 Table 36 Standard counter function blocks

1 CTU

2 CTD

3 CTUD

2.0 3.0 2.5.2.3.4 Table 37 Standard timer function blocks

1 TP

2a TON

3a TOF

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

2.5.3 Table 39 Program declaration features

1 RETAIN qualifier on internal variables

11 Declaration of directly represented, non-retentive
variables

13 Declaration of locations of symbolic variables

15 Initialization of directly represented, non retentive
variables

17 Location and initial value assignment to symbolic
variables

19 Use of directly represented variables

2.0

2.0

3.0

3.0

2.9.2 Table 40 Step features

1 Step, initial step (graphical form)

3a, 3b Step flag

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.9.3 Table 41 Transitions and transition conditions

2 Transition condition using LD language

3 Transition condition using FBD language

4,4a,4b Use of connector

7 Use of transition name

7a Transition condition using LD

7b Transition condition using FBD

7c Transition condition using IL

7d Transition condition using ST

MachineLogic Runtime Reference Guide Compliance List • 7

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

2.9.4.1 Table 42 Declaration of actions

1 Any boolean variable can be an action

2l Graphical declaration in LD language

2f Graphical declaration in FBD language

3s Textual declaration in ST language

3i Textual declaration in IL language

2.0 3.0 2.9.4.2 Table 43 Step/action association

1 Action block

2 Concatenated action blocks

2.0 3.0 2.9.4.3 Table 44 Action block

1 Qualifier

2 Action name

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.9.4.4 Table 45 Action qualifiers

2 Non-stored

3 overriding Reset

4 Set (Stored)

5 time limited

6 time delayed

7 Pulse

8 Stored and time delayed

9 Delayed and stored

10 Stored and time limited

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.9.5 Table 46 Sequence evolution

1 Single sequence

2a Divergence of sequence selection

3 Convergence of sequence selection

4 Simultaneous sequences

5a Sequence skip

6a Sequence loop

7 Directional arrows

8 Compliance list MachineLogic Runtime Reference Guide

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

2.7.1 Table 49 Configuration and resource declaration features

1 CONFIGURATION

3 RESOURCE

4 VAR_GLOBAL within RESOURCE

5a Periodic TASK

5b Non-periodic TASK

6a PROGRAM with PROGRAM-to-TASK association

6c PROGRAM with no TASK association (by
DEFAULT task)

7 Declaration of directly represented variables

2.0 3.0 2.7.2 Table 50 Task features

1a Textual declaration of periodic TASK (by project
tree)

1b Textual declaration of non-periodic TASK (by
project tree)

3a Textual association with PROGRAMs (by project
tree)

5b Preemptive scheduling

MachineLogic Runtime Reference Guide Compliance List • 9

2.0 3.0 3.2.2 Table 52 Instruction list (IL) operators

1 LD

2 ST

3 S, R

4 AND

6 OR

7 XOR

8 ADD

9 SUB

10 MUL

11 DIV

12 GT

13 GE

14 EQ

15 NE

16 LE

17 LT

18 JMP

19 CAL

20 RET

21)

2.0 3.0

3.2.3 Table 53 Function block invocation features for IL language

2 CAL with load/store of inputs

10 Compliance list MachineLogic Runtime Reference Guide

2.0 3.0 3.3.1 Table 55 Operators on the ST language

1 Parenthesization

2 Function evaluation

3 Exponentiation

4 Negation

5 Complement

6 Multiply

7 Divide

8 Modulo

9 Add

10 Subtract

11 Comparison

12 Equality

13 Inequality

14 Boolean AND (&)

15 Boolean AND

16 Boolean exclusive OR

17 Boolean OR

2.0 3.0 3.3.2 Table 56 ST language statements

1 Assignment

2 FB invocation and FB output usage

3 RETURN

4 IF

5 CASE

6 FOR (only upwards)

7 WHILE

8 REPEAT

9 EXIT

10 Empty statement

MachineLogic Runtime Reference Guide Compliance List • 11

2.0

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

4.1.3 Table 57 Representation of line and block

2 Horizontal lines

4 Vertical lines

6 Horizontal/vertical connection (with connection dot)

8 Line crossings without connection (without gap)

10 Connected and non connected corners

12 Blocks with connecting lines

14 Graphic connectors

2.0 3.0 4.1.3 Figure 23 Feedback path

a Explicit loop

b Implicit loop

c LD language equivalent

2.0

2.0

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0

4.1.4 Table 58 Graphic execution control elements

1 Unconditional jump FBD

2 Unconditional jump LD

3 Conditional jump FBD

3 Conditional jump LD

5 Conditional return LD

6 Conditional return FBD

3.0 4.2.1 Table 59 Power rails

1 Left power rail

2 Right power rail

2.0 3.0 4.2.2 Table 60 Link elements

1 Horizontal link

2 Vertical link

2.0

2.0

3.0

3.0

4.2.3 Table 61 Contacts

1 Normally open contact

3 Normally closed contact

2.0

2.0

2.0

2.0

3.0

3.0

3.0

3.0

4.2.4 Table 62 Coils

1 Coil

2 Negated coil

3 SET (latch) coil

4 RESET (unlatch) coil

12 Compliance list MachineLogic Runtime Reference Guide

MachineLogic
Version

MachineLogic
Runtime
Version

Feature

2.0 3.0

IEC 1131 Extensions

2 TR2: constant type specifier e.g. INT#12, BOOL#1

MachineLogic
Version

MachineLogic
Runtime
Version

Feature

2.0

2.0

3.0

3.0

supplementary features

BOOL8

Several functions and function blocks as described in the online
function and function block help

MachineLogic Runtime Reference Guide Index • 1

Index

A
addressing

I/Os to memory, 4-2
associating

I/Os to tasks, 4-2
program to task, 5-7

AT, 3-4

B
bootproject

download, 6-1

C
communication interface, 2-2
compiler, 2-3
configuration, 5-1
counter, 2-3
cycle period, 2-3
cyclic task, 5-3

D
debug, 2-3
declaring

resource, 5-2
task, 5-6

documentation
context-sensitive help, 1-2
Manual, 1-1, 1-2

downloading, 6-1
bootproject, 6-1
project, 6-1
zipped project, 6-1

driver
I/O configuration, 4-3

E
error, 2-2
error manager, 2-2
error task, 5-3

F
flags

shared memory firmware flags, 3-5
system flags, 3-5, 6-5

I
I/O configuration, 4-1
I/O interface, 2-2
I/O system

decentral, 2-2
I/O configuration

driver, 4-3
IEC 1131-3

compliance, 2-4
initial task, 5-3
input, 4-1

L
limitations, 2-4

M
MachineLogic Slot Card (MLSC)

description, 1-1
MLSC Control Panel, 2-3
memory

addressing I/Os, 4-2
buffer, 3-3
capacity, 2-3
PCLC program, 3-3
retentive data, 3-5

O
operational state, 6-1
output, 4-1

P
program, 5-7

associate to task, 5-7
in MachineLogic, 5-7

PROGRAM, 4-2
program execution, 2-2
project

download, 6-1

R
real numbers, 7-2

Error treatment of real numbers, 7-2
resource, 5-1

declare, 5-2
restrictions, 2-4
retentive data

2 • Index MachineLogic Runtime Reference Guide

memory, 3-5

S
shared memory firmware flags, 3-5
signals, 4-1
speed, 2-3
string

*TO_STRING functions, 7-6
construction of the format string, 7-7
STRING_TO_* functions, 7-4

strings, 7-3
Error treatment of string errors, 7-3

system flags, 3-5, 6-5
system manager, 2-2
system task, 5-3
system programs, 5-4

T
task

amount, 2-3
associating I/O, 4-2
cyclic task, 5-3
declare, 5-6
error task, 5-3
initial task, 5-3

level, 5-2
MachineLogic Runtime tasks, 5-2
supervisor task, 5-3
system task, 2-3, 5-3
user task, 5-2, 5-3
watchdog, 5-6

technical data, 2-3
timer, 2-3

V
variable

bitsize, 3-4
declaration, 3-4
in MachineLogic, 3-6
location, 3-4

variables
direct, 3-4

W
watchdog, 5-6

Z
zipped project

download, 6-1

	Introduction
	What is MachineLogic Runtime?
	MLSC

	MachineLogic Runtime and MachineLogic Development
	What kind of documentation is provided for MachineLogic Runtime?
	Who should read this manual and how is it structured?
	Symbols and textual conventions

	Getting familiar with MachineLogic Runtime
	The MachineLogic development system and MachineLogic Runtime
	Parts of MachineLogic Runtime
	I/O interface
	Communication interface
	System manager
	Error manager
	Debug-Kernel
	Compiler for control program
	MLSC Control Panel

	Technical data
	Compliance with IEC 1131-3
	Restrictions for data types
	Restrictions for strings
	Restrictions for ST

	MachineLogic Runtime Memory
	Memory Guidelines
	Variable declarations in MachineLogic
	Non-direct variables
	Direct variables
	Retentive variables
	System flags
	Shared memory firmware flags
	How to use variables in MachineLogic

	Configuring MachineLogic Runtime
	Inputs, outputs and the process
	Setting up the I/O configuration in MachineLogic 2.11
	Declaring the I/O groups
	Declaring the logical addresses
	Declaring the I/O driver

	Setting up the I/O configuration in earlier versions of MachineLogic
	Declaring the I/O groups
	Declaring the logical addresses
	Declaring the I/O driver

	Setting up the data configuration

	Control Applications and MachineLogic Runtime
	The control application in the MachineLogic Runtime memory
	Configurations and resources
	How to declare resources in MachineLogic

	Tasks and MachineLogic Runtime
	Runtime and task description

	User tasks
	Cyclic tasks
	System tasks
	How to declare user tasks in MachineLogic
	How to use system tasks and SPGs in case of MachineLogic Runtime errors

	Tasks and watchdogs
	Tasks and programs
	How to use programs in MachineLogic

	Tasks and preemptive scheduling

	Downloading, Controlling and Debugging
	Downloading
	Operational states in MachineLogic Runtime
	Changing the operational states - overview
	Controlling and changing operational states
	Debugging and online mode
	Debugging and operational states
	System flags

	MachineLogic Runtime Data Types
	Real Numbers
	Error treatment of real numbers

	Strings
	Error treatment of string errors
	STRING_TO_*
	*TO_STRING

	IEC compliance list
	Index

